
Relevance Ranking and Hit Description in Math

Search

Abdou S. Youssef∗

Department of Computer Science
The George Washington University

Washington DC, 20052
USA

May 2, 2008

Abstract
As math becomes available in digital libraries and on the Web, math search
has been receiving some research attention. To be effective and useful, math
search systems must not only recognize math symbols and structures in queries
and contents, but also present the search hits in a form that enables the user to
identify quickly the truly relevant hits. To meet the latter requirement, the hits
must be sorted according to domain-appropriate relevance criteria, and each hit
ought to be accompanied with a query-relevant brief description, or summary,
of its target.

In conventional text information retrieval systems, hits are ranked using rele-
vance metrics that rely mostly on keyword frequencies and document sizes. Such
metrics are inadequate in math search. Therefore, new relevance measures must
be defined, which take into account math-specific factors. In this paper, new
relevance metrics are defined for math search, methods for computing and im-
plementing them are discussed, and comparative performance evaluation results
are presented.

Query-relevant hit-summary generation is another factor that enables users
to quickly determine the relevance of the presented hits. Hit titles accompanied
by several leading sentences from the target document are often inadequate to
convey to the user the relevant contents of the hit. This paper presents alterna-
tive query-relevant hit-summary generation methods, outlines implementation
strategies, and presents performance evaluation results.

∗This work was done in part at the National Institute of Standards and Technology, USA,
as part of the DLMF Project.

1

1 Introduction

Digital libraries of math, physical sciences, and engineering, contain many equa-
tions, graphs, tables, numerous embedded mathematical expressions, and text.
Therefore, users will need specialized, math-aware search systems to find and
locate quickly the math information that is most relevant to their information
needs. A number of search systems have been built, such as the NIST DLMF
search system [15, 18, 19], the Design Science’s Mathdex [13], and the formula
search system MathWebSearch of Kohlhase et al. [9].

Math search systems must not only recognize math symbols and structures in
queries and contents, but also present the search hits in a form that enables the
user to identify quickly the truly relevant hits. To meet the latter requirement,
the search system must sort the hits according to domain-appropriate relevance
criteria, and provide with each hit a query-relevant summary of the hit target.

The standard relevance measures in text search, which rely mostly on key-
word frequencies and document sizes, are inadequate in math search. This is
because, among other things, the size of a math object (such as an equation)
and term-frequency of a keyword inside the math object have no bearing on how
important the object is, whereas the nature of the terms (e.g., standard function
names and standard math operations) that appear in an object and the nature
of the object itself (e.g., definition, theorem, and proof) carry considerably more
relevance to the users of math search. Therefore, alternative relevance measures
must be defined, which give more weight to certain types of information than
to others, such as definitions, theorems, “standard” functions and operators,
and frequently referenced items. In this paper, new non-interactive relevance
metrics are defined for math search, methods for computing and implementing
them are discussed, and performance evaluation results are presented. It must
be noted that different users may want different things (e.g., some users may
be more after definitions than theorems, while others are after theorems, and
so on). An interactive user-interface-based mechanism for influencing relevance
ranking can be taken into account, and many of the techniques presented in
this paper can be adapted for that purpose, but this interactive aspect is left
for future work.

Query-relevant hit-summary generation, or simply hit packaging, is another
factor that enables users to quickly determine the relevance of the presented hits,
and thus determine the most relevant hits. The hit title, accompanied by a few
leading sentences from the target document, forms a fast and simple way for
hit packaging. However, this often fails to convey to the user the true relevance
of the target document. Since users should not be required to pursue many
of the hits and read significant portions of their contents to locate the wanted
information, automated generation of better hit summaries must be provided.
This paper presents query-relevant hit-summary generation methods, outlines
implementation strategies, and shows substantiating illustrations.

2

2 Background and Related Work

Three types of math search have received attention and/or have been built. The
first is field based, widely deployed in several mathematics databases and con-
tent providers such as Zentralblatt’s ZMATH [20] and MathDi [12], the Jahrbuch
Database [8], and AMS’s MathSCiNet [1]. These search systems, however, are
conventional text search, lacking awareness of math notation and structure.
The second is formal-math search, such as the search systems developed and
researched by Guidi et al [6, 7] and MoWGLI of the Helm project [16]. Formal-
math search tools are in a basic form, and thus-far intended for the developers
in the formal-math community. The third type is math-aware fine-grain search
such as the DLMF search system [15, 18, 19], the Design Science’s Mathdex
Web search system [42], Kohlhase’s search engine MathWebSearch [9], Mathe-
matica search system (mathematica.com), the integral-table lookup tool TILU
[5], and several Web-accessible rudimentary math term-occurrence search capa-
bilities, such as Ask Dr. Math (http://mathforum.org/dr.math/). This type
of math search is intended for general use by students, educators, researchers,
and professionals, in mathematics, physical sciences, and engineering. It is this
kind of search that requires further investigation for relevance ranking and hit
packaging, which are the focus of this paper.

Relevance scoring has received much research attention in text search for
over three decades [2, 3, 4, 17]. Although several relevance metrics have been
developed and studied, most are elaborations and variations of one central met-
ric, often referred to as the tf∗idf metric (term frequency inverse document
frequency). Essentially, this metric is predicated on the assumptions that (1)
the higher the relative frequency of a query keyword in a hit document is, the
more relevant the document is, and (2) the more frequent a term is in the whole
database, the less important its occurrences are. One implication is that if two
documents have the same number of occurrences of the keywords but one is a
smaller document than the other, the smaller document ranks higher because
its relative term-frequency (i.e., number of keyword occurrences divided by the
document size) is larger.

Such traditional considerations are inadequate in math search. For exam-
ple, assuming the desired hits are to be equations and definitions, a smaller-
size equation (or definition) is not necessarily more relevant than a larger-size
equation (or definition), and the frequency of occurrence of a term in the equa-
tion/definition is much less important than the mathematical significance of
that term. To illustrate, suppose the user query is ”sin”. Among the many
hits are those presented in Figure 1. The ranking exhibited in Figure 1 is the
standard ranking used in text search systems. However, most math search users
would wish a different ranking altogether. For example, a novice in trigonom-
etry is more likely to be expecting a very basic definition of sin, that is, hit
28 should be the first hit; and for a more advanced trigonometry student, hits
23–27 should rank ahead of hits 1–22, and hits 24-27 are arguably more impor-
tant than hit 23 and should rank ahead. Furthermore, it can be argued that a
user looking for the value of sin at a specific angle would specify the angle in

3

1. sin 0 = 0
2. sin π = 0
... The next 20 hits are the values of sin at 20 specific angles
23. sin 2x = 2 sin x cosx
24. sin2 x + cos2 x = 1
25. cos nx + i sin nx = (cos x + i sin x)n

27. sin x = eix−e−ix

2i
28. sin x is the ratio of the length of side facing the angle x in a right triangle,
to the length of the hypotenuse of the triangle.

Figure 1: tf∗idf ranking of hits for query ”sin”

the query; therefore, for nearly all math search users, the standard methods of
ranking used in text search is the wrong ranking for math search.

Even in the context of pure text search, the shortcomings of traditional
relevance scores were recognized in Web search, especially by Google. It was
realized that the importance, and thus relevance, of a document/page depends
more on who publishes it, how many links point to it, how many times it is
visited, and such, than the “uninformed” statistics of term frequencies and
document sizes.

These same considerations can be utilized in math search, but after signifi-
cant adaptations and specialization to math contents. For example, the number
of times a particular math entity (e.g., equation) is referenced in a document/site
can be a very telling indication of the relative importance of that entity. In ad-
dition to cross-reference statistics, domain-specific term weighting can be taken
into account in relevance scoring, with great expected benefits. For example, if
a query includes among its keywords the term “BesselI” and the variable name
“x”, then intuitively the first term is much weightier than the second term.

The relevance metrics used in the current generation of mostly experimental
math search systems, including MathDex, MathWebSearch and DLMF search,
have been identical to the ones used in conventional text search, that is, the
tf∗idf metric. In this paper, alternative metrics are developed and shown to
yield significatly improved results.

The other subject of focus in this paper, which has an equal bearing on
helping users find relevant information fast, is hit-description generation. Hit-
description generation, or hit packaging, has never been viewed as a major
issue in text search, and has thus been done in a rather simple way. Prior to
Web search, text search systems often reported each hit as a document title,
sometimes accompanied by a few leading sentences in the hit’s document. In
Web search, such as in Google, the hit package consists of the page title of the
hit, accompanied with 2–4 lines of sentences or sentence fragments that contain
the keywords of the query, usually highlighted.

As math search is still in its early experimental phases, where more pressing
issues have had to be addressed first, the same methods used in text search are
used by necessity, until more specialized alternatives are found. In Mathdex

4

[13], the Web page title and the first couple of lines of the Web page contents
of the hit are displayed with the hit. As a significant enhancement, a special
button is added next to each hit, which when moused over, shows one equation
or math expression that made the page match the query. In early experimental
versions of DLMF search, two hit-packaging methods were used, depending on
the nature of the hit. If the hit target has a small amount of contents, such
as equations or even graphs and small-size tables, the entire target content is
presented in the hit itself, providing immediacy and directness. If, on the other
hand, the hit target is a section of a chapter, the hit description consists of
the section title and the chapter title. Mathematica search, like Google, offers
with each hit about 2 lines of sentence fragments that contain query keywords.
Mathematica’s hit packaging may be adequate for Mathematica contents, which
tend to be short descriptions of functions or portions of code mixed with some
text, but it will not meet the need for general-purpose math search.

Clearly, much more representative and query-relevant descriptions of hit
targets should be generated per math-hit. The reason is that the user will be
able to judge faster the value and relevance of the hit without having to pursue
many hits and read long passages in them before the valuable and truly relevant
information is found. Techniques generating such descriptions/summaries are
presented in this paper.

3 Relevance Ranking in Math Search

Before the new relevance metrics are introduced and related considerations dis-
cussed, it is instructive to look closely at the standard tf∗idf metric. For a
query q and a hit-target document d in some presumed database DB, the tf∗idf
relevance metric value is:

Relevanceq(d) =
∑

query terms t∈q

tf(t, d)× idf(t)

where

tf(t, d) =

√
frequency(t, d)

|d| ,

idf(t) = log
|DB|

number of documents containing t in DB
,

frequency(t, d) = the number of times the term t occurs in the document d,

|d| = the number of non-stopwords in document d,

and

|DB| = the number of documents in the database DB.

5

Note that the first factor, tf(t, d), represents the frequency of a term in the
document, normalized by the document size, and that the second factor, idf(t),
represents the inverse of the number of documents containing the term relative
to the total number of documents in the database. The square root and the log
are meant to attenuate the contributions of those factors to various degrees.

A deeper look into the formula reveals that the first factor attempts to
capture the importance (or weight) of the term t with respect to the document
d (and thus the relevance of the document relative to the term t), while the
second factor attempts to capture the weight of the term t with respect to the
database as a whole.

The paper will preserve this paradigm of expressing the relevance of a doc-
ument to a term as a function of the weight of the term vis-a-vis the document
and the weight of the term vis-a-vis the database. What will change is the
way of measuring each of those factors; tf(t, d) will be replaced by a general
term-document weight function, and idf(t) will be replaced by a term weight
function, and a math object weight function will be introduced (where a math
object can be a full document or some small items such as an equation or even
a sentence); all such weight functions will be elaborated later. Furthermore,
since various aspects will influence those factors, and some aspects are abso-
lutely more important than others, a multidimensional relevance metric, which
is then a relevance vector, or an equivalent weighted sum of the latter’s compo-
nents, form alternative ways of measuring relevance and sorting the hits. Several
static (i.e., query-independent) and dynamic (i.e., query-dependent) aspects for
relevance computation will be taken into account, as explained next.

Static Weight Information

Many math terms have intrinsic importance due to what they stand for,
and some terms have more intrinsic importance than others. For example,
special function names (like “sin” and “BesselI”) stand for much more than
a moot variable name. Similarly, certain operators, such as integration (

∫
),

exponentiation and division, are more important than variable names. This type
of intrinsic importance of terms in themselves is called categorical importance; it
is a primary determinant of the term-weight function Weight(t). This function
can be defined as follows:

Weight(t) = Quantify(Type(t)),

where

• Type is a mapping that maps a term to a category based on some typology
or taxonomy of terms from a term-importance perspective. For example,
the term categories can be

– “operator” (such as arithmetic or logic binary/unary operations and
relational operations, like +,−, ∗, /, =, <, >, and functional operators
like

∫
and differentiation);

6

– “special-function” (such as the Bessel functions, Jacobi functions,
trigonometric functions, and so on); and

– “regular” (for everything else, such as variable names, arbitrary func-
tion names, numerical constants, and so on).

Note that this typology just presented is only one out of possibly many,
and is by no means exhaustive or universal. Different system designers
may have different taxonomies that will suit their applications and in-
tended purposes.

• Quantify is a mapping that maps a term-type into a positive real number
associated with that type, where the more important a type is, the larger
its associated number is. For example, one can have Quantify(regular) =
1, Quantify(operator) = 2, and Quantify(special function) = 4, which
is what we used in our testing and performance evaluation on the DLMF
system. Again, for different taxonomies of terms, system designers can
customize their Quantify mapping.

Much like terms, math objects (e.g., equations, graphs, tables, or full docu-
ments) have intrinsic importance irrespective of the query. Several aspects feed
into that importance:

1. the type of the math object, such as equation, graph, table, theorem,
proof, lemma, bibliographic item, notation item, and so on;

2. the categorical importance of the member of terms and other constituent
(i.e., subset) objects;

3. the number and possible types of cross-references made to the object by
other objects in the database (or even on the Web). The types of cross-
references are taxonomized in two ways. In the first taxonomy, a cross-
reference can be local (i.e., internal) or global (i.e., external):

• A local cross-reference is one where the referring object and the
referred-to object belong to one and the same division of informa-
tion, such as one chapter or one manuscript or one Website. For
example, suppose the object is a theorem T in an article A, and the
database DB is a collection of math articles. The references (such
as “see theorem T” or “as shown in T”) made to theorem T in-
side article A are taken to be the local cross-references for A. Note
that the manner in which such references are made (and recognized)
is not of concern in this paper (see section 5). In practice, if the
cross-references are explicitly and formally marked-up in the con-
tents using special XML elements/attributes, then recognizing and
counting the cross-references is relatively straightforward, but if the
cross-references are natural-language references (something like “see
theorem 3.17”), then elaborate heuristic algorithms will be needed to
mine them, but that is outside the scope of this paper.

7

• A global cross-reference is one where the referring object and the
referred-to object belong to two different divisions of information.
Using the example above, the cross-references to theorem T from
all the articles in the DB (excluding the article A containing T) are
taken to be the global references to T . In a Web-wide application, the
global references are the URLs pointing to the object from outside
the Website of that object.

The above taxonomy is fairly natural, and has been successfully applied
by Google in its search engine. The next taxonomy is math-specific,
and premised on the common practice in math authoring, which follows
the definition-theorem-proof paradigm, and on the expectation that many
math searchers will often look for definitions and for propositions.

Accordingly, in this taxonomy, cross-references can be definitional cross-
references or propositional cross-references:

• A reference from object A to object B is definitional if both of the
following conditions are met:

– Object B defines some mathematical term/concept c (as for ex-
ample the defition of “sin”)

– Object A refers explicitly to object B as the object that defines
c; for example, A could use “sin” and refer readers to object B
to see the definition of “sin”.

• A reference from object A to object B is propositional if both of the
following conditions are met:

– Object B states and/or proves some proposition P (where the
term “proposition” is used in the broadest sense, so it encom-
passes theorems, lemmas, corollaries, “inline” substantiated or
stipulated claims, etc.). For instance, object B could be/contain/prove
the De Moivre Theorem.

– Object A refers explicitly to object B as the primary location of
proposition P .

Clearly, although the taxonomies presented here are natural for math con-
tents, they are not the only types of references. Different system designers may
consider other taxonomies of references that best fit their purposes. The tech-
niques presented here for using reference information to better capture relevance
in math search can be easily extended to other taxonomies of references.

Based on the taxonomies presented above, the weight function Weight(mo),
of a math object mo, can be defined as follows:

Weight(mo) = Combine(Quantify(Type(mo)),TW(mo),CR(mo)),

where

• Type and Quantify are like those for terms except here the categories
are those of math objects;

8

• TW(mo) captures the weight of the terms that make up the math object
mo, such as

TW(mo) =
∑

t∈mo

Weight(t),

where Weight(t) = Quantify(Type(t)), as defined above. For example,
if mo is “int sin^2 x dx” and if we assume Quantify(regular) = 1,
Quantify(operator) = 2, and Quantify(special function) = 4, then

TW(mo) = Weight(int) + Weight(sin) + Weight(^) + Weight(2) +
Weight(x) + Weight(dx) = 2 + 4 + 2 + 1 + 1 + 1 = 11

• CR(mo) captures and quantifies the statistics of cross-reference pointers
pointing to mo. To illustrate, suppose mo is a math page that happens to
be a section S of a chapter (or article) C and that contains one definition
D and one proposition P , and suppose the database DB is a collection of
chapters or articles. Let

– Nld = the number of local definitional references to S, that is, the
number of references made inside the chapter/article C to definition
D (those references are made inside C but outside S). Assume for
illustration that Nld = 5 for this example.

– Nlp = the number of local propositional references to S, that is, the
number of references made inside the chapter/article C to proposition
P (those references are made inside C but outside S). Assume for
illustration that Nlp = 7 for this example.

– Ngd = the number of global definitional references to S, that is, the
number of references made outside the chapter/article C to definition
D (those references are made inside DB but outside C). Assume for
illustration that Ngd = 20 for this example.

– Ngp = the number of global propositional references to S, that is, the
number of references made outside the chapter/article C to proposi-
tion P (those references are made inside DB but outside C). Assume
for illustration that Ngp = 100 for this example.

Then, CR(mo) can be defined as a weighted sum of Nld, Nlp, Ngd, and
Ngp, where the weights reflect the relative importance of local vs. global
and of definitional vs. propositional. For instance, if a designer decides
that for his/her application and intended users the global references are
twice as important to the notion of relevance as local ones, and definitions
are three times as important to relevance as propositions, then

CR(mo) = 3Nld + Nlp + 2 ∗ 3Ngd + 2Ngp.

For the concrete figures assumed in this example, CR(mo) = 3 ∗ 5 + 7 +
2 ∗ 3 ∗ 20 + 2 ∗ 100 = 342.

9

• Combine combines Quantify(Type(mo)), TW(mo), and CR(mo) into
either a scalar or a vector value, as explained next.

Combining several factors of various degrees of importance into a single
ranking-metric can be done in two ways. The first way is to map the vector
V = (x1, x2, . . . , xn) of factors into a scalar value S, such as by adding or
multiplying the components, where every component xi is weighted by some
scalar wi to reflect its relative importance. That is, the scalar value formula
can be S =

∏n
i=1 xwi

i or S =
∑n

i=1 wixi (which are equivalent via the log
isomorphism), among other modeling possibilities. With scalar metrics, the
ranking is done by straightforward sorting of objects according to their scalar
ranking metric.

The other way of combining factors is to map the vector of factors V =
(x1, x2, . . . , xn) into another, carefully ordered vector of factors V ′ = (y1, y2,
. . . , ym), resulting in a vector ranking metric of the same as or smaller dimen-
sionality than that of the original vector V . The first component y1 corresponds
to the factor of highest weight, y2 corresponds to the factor of the second highest
weight, and so on. The ranking of objects is then done by lexicographic sorting
of the vector metric values of the objects.

Vector ranking metrics have several advantages. First, there is no need to
concern oneself about how the weights of the various factors should be combined
into a scalar metric formula. Second, vector metrics and lexicographic sorting
strictly enforce the policy that a most important factor should not be over-
whelmed by a combination of less important factors. To see this more clearly,
assume that the metric is a two-component vector (x, y), where x is binary value
(x = 1 if the hit is a definition of at least one of the keywords in the query, and
x = 0 otherwise), and y is the tf∗idf value of the hit. The lexicographic order
is simply defined as follows: (x1, y1) < (x2, y2) if x1 < x2 or (x1 = x2 and
y1 < y2). It can now be seen that all the hits that happen to be definitions of
keywords in the query will have 1 in the first component of their relevance vec-
tor, whereas all the other hits will have 0 in the first component of the relevance
vector; as a result, the first group of (defining) hits will always rank higher then
the second group of (non-defining) hits no matter what the second components
of the relevance vectors are. If this is what the users of a database want, then
such an approach is perfect. If, on the other hand, the definitional nature of
hits should not assume absolute primacy over all values of tf∗idf value, then
the vector approach must not be used; instead, scalar metrics derived from a
weighted sum of all the vector components would be preferable.

The choice between the two approaches is left to the search system designer
and/or the preferences of the specific users. Indeed, the choice between the two
approaches, and the specific ordering or weights of the factors, can be made
to vary dynamically based on the explicit choices of the user, or based on the
automated deduction of the user’s preferences through monitoring of his/her
search behavior. Accordingly, the rest of the paper focuses primarily on the
factors. Although the factors worth considering are listed in a vector form, the
ordering of the components, or the weighted combining of the factors into a

10

scalar value, will be left unspecified except when stated otherwise.

Dynamic Weight Information

Dynamic weight information relates to the weight of math object mo relative
to the terms t of a query q. That information is incorporated into the function
Weight(t,mo) or generally Weight(q,mo).

One possible definition of Weight(q, mo) is the same as TW(mo) except
that the terms will be limited to those that are in the intersection of the object
and the query. An elaboration on this definition would be to factor in the
number ND(q, mo) of the query keywords that are defined in the object mo.
Therefore, assuming that the types of terms are {T1, T2, . . . , Tk},

Weight(q, mo) = (ND(q, mo), N1(q, mo), N2(q,mo), . . . , Nk(q, mo))

where
Ni(q, mo) = |{t | Type(t) = Ti and t ∈ mo and t is a keyword of the query q}|.

Overall Relevance Metric

Based on the preceding analysis and discussions, the overall relevance metric
is a vector made up of the components of Weight(q,mo) vector and on the
Weight(mo), ordered or weighted according to the system designer’s assigned
relative importance of each component.

One possible ordering, from the highest importance to the lowest importance,
is:

• ND(q, mo), which is the number of query keywords defined in the object
mo,

• Ni(q,mo) for the top one or two most important term types, where Ni(q, mo)
is the number of terms of type Ti that occur in both the query and the
object,

• CR(mo), which captures the global/local definitional/propositional cross-
reference statistics,

• the remaining Ni(q,mo)s

• TW(mo), which is the term-weight of the object mo, expressed either as
a vector or a weighted sum,

• (optional) Quantify(Type(mo)), reflecting preferences for certain docu-
ment/object types over others,

• tf∗idf(q,mo), as a final tie-breaker.

11

3.1 Speed Performance Evaluation of Hit Ranking

Hit ranking involves two major steps. The first is the computation of the rel-
evance of each hit, and the second is the sorting of the hits according to their
relevance values. The second step is rather straightforward and can be done
using any fast sorting algorithm (such as mergesort or heapsort), which takes
O(n log n) time, where n is the number of hits. The first step, on the other
hand, depends on the specific relevance metric used. The relevance factors that
are considered in this paper are computed at indexing time, that is, offline.
Therefore, their computation time does not impact the query search time.

The relevance metrics discussed in this paper have been implemented and
tested on the DLMF testbed, using a benchmark of queries that we have col-
lected (some of those queries are shown in Table 1). Several queries with a range
of numbers of hits were tested to measure the overhead of relevance ranking.
A sample of the results is presented in Table 2. The table shows the queries,
the number of hits per query, the search time for identifying the hits but with-
out ranking, and the time to perform the relevance computation and relevance
ranking of the hits. As can be seen, the relevance computation and ranking
time is usually higher than the search time, and, naturally, it is higher for larger
numbers of hits. Nevertheless, for a standalone database of the size range of
DLMF (i.e., about 1000 pages of contents containing over ten thousand equa-
tions), the number of hits will usually be in the tens, hundreds, or at most in the
thousands, and the relevance ranking overhead ranges from a tenth of second
to at most a second, which is quite acceptable.

For Web search relevance ranking, where the number of hits could conceiv-
ably be in the hundreds of thousands or even millions, the relevance ranking
time will be significantly higher. However, the overhead can be managed down
to practical ranges. One possibility is to do a two-stage ranking. In the first
stage, a coarse relevance metric is applied, which takes into account a carefully
selected small subset of the relevance criteria when computing relevance, and
instead of sorting all the hits, find the top 100 (or so) hits. In the second stage,
a full-fledged relevance evaluation and sorting of those 100 hits is done and the
hits are presented to the user in hit-pages, about 10 hits per page. Since the
truly relevant hits are very likely to be in the top 100, and most users rarely
search down beyond that level, this approach will often be sufficient. In the
rare cases where a user wishes to see the hits below rank 100, the 2nd stage is
repeated on the next 100 hits, and so on.

It is left to future work to address the important question of determining
which subset of relevance criteria makes a good coarse-grained relevance metric
to be used in the first stage of the 2-stage Web search relevance ranking process.

3.2 Outcome Performance Evaluation of Hit Ranking

Outcome performance evaluation of relevance ranking is extremely subjective. A
thorough evaluation of this sort will be left to future work, where a statistically
significant number of users and a benchmark of queries are identified and used,

12

Table 1: A Sample of Queries in the Test Benchmark

Queries Comments
Ai^2
int sin
eulerBeta
sin^2
jacobisn OR Si
eulerGamma
cos
sin
Ai^2+Bi^2
Ai’= the derivative of Airy function Ai
sin^2+cos^2
besselJ_nu
int_0^x e^(t^2)
int_0^(x or z) e^(?^2) the “?” is a wildcard standing for any

arbitrary single character
sqrt pi
(d w)/(d z) for dw

dz
int (d z)/z
n choose k
/Gamma expressions where Γ is in the denominator
Gamma’/Gamma searching for Γ′

Γ
function^2+function^2 searching for a pattern of the sum

of the squares of two functions
(function^2 + function^2)^(1/2)
function^2 (+ or -) function^2
trigonometric^2+trigonometric^2
jacobi^2+jacobi^2 searching for a pattern of the sum

of the squares of two Jacobi functions
kelvin^2+kelvin^2
function^3 +4 function
_2 F_1 hypergeometric function 2F1

? F? hypergeometric function pFq for whatever p and q
lim ?-> 0 (sin/?) limx−>0

sinx
x , where x is an arbitrary symbol

besselI =eulergamma to find equations where BesselI is expressed
in terms of Euler Gamma

pi = for the value of π
e=
gamma= for the value of the Euler constant γ
Gamma(1/2)= for the value of Γ(1

2)
e^(i pi)= for the value of eiπ

e^z= 1! 2! for the series expansion of ez

13

Table 2: Speed Performance of Search and Hit Ranking. (All time measurements
are in milliseconds)

Query Number of Hits Search Time Hit-ranking Time
Ai2 7 16 15∫

sin 19 15 16
eulerBeta 28 15 32
sin2 80 15 78
jacobisn OR Si 94 31 63
eulerGamma 653 31 344
cos 666 16 297
sin 707 15 329
z 2499 16 828

and a metric of user satisfaction is decided upon and utilized in the collection
of user assessments of the search system, including the relevance ranking and
the hit-description generation which is discussed in the next section.

For now, suffice it to say that based on the expectations that definitions will
be sought after more often by more users, and based on the valuation scheme
where the definitions/equations/plots that are cross-referenced more often are of
more weight, the outcome is far superior to the default tf∗idf relevance ranking
approach. Hundreds of queries were tested. In each and every case, definitions
and notations of the query keywords ranked on top, and items of higher cross-
reference values ranked higher. This is much better that ranking under the
tf∗idf relevance model, where such hits were “buried” in the second, third, or
fourth page of hits.

Before closing this section, though, it should be noted that the cross-reference
information factors led to some curious and possibly confusing rankings. For
example, suppose that a (novice) user is interested in the definition of sin and
in the standard trigonometric equations involving sin. It is natural for a user to
submit the query “sin”. Now suppose that a document D contains the equation

sin(νπ)H(2)
ν (zempii) = eνπi sin(mνπ)H(1)

ν (z) + sin((m + 1)νπ)H(2)
ν (z),

and assume that equation is heavily cross-referenced in the database. Then,
document D will not only match (because it has sin), but, due to the contri-
butions of the cross-reference data to the relevance metric, will probably rank
higher than the documents that the user wants. If, furthermore, the database
contains many documents that have very advanced equations involving sin and
that are highly cross-referenced, then the wanted documents will rank so low
that the user may give up looking for them in the hit list. Therefore, the
cross-reference aspect of ranking needs further research and refinements (such
as obtaining preference information from the user like definitions, elementary
equalities, and so on), which will be the subject of future work.

14

4 Hit-Description Generation in Math Search

As mentioned earlier, the rather simple way of putting together the hit-title
and a few leading sentences of the hit-target fails to convey to the user why a
document matched and whether the matching parts are indeed relevant. It will
be much better to the user if those parts are extracted and provided with the
hit so the user can quickly determine whether or not a hit is worth pursuing.
Furthermore, if those parts are determined carefully, they may often be all that
the user needs from a document, thus saving him/her extra efforts. This section
will provide new methods for determining query-relevant excerpts from math
documents. Before starting, it must be noted that if the hit targets are small
math objects (e.g., equations or graphs), then such objects should be displayed
directly with the hits, achieving maximum immediacy at the same screen space
size as typical hit descriptions. Therefore, for the rest of this section, it will
be assumed that the hit targets are relatively sizable objects that cannot be
conveniently displayed along with hits, such as sections, chapters, articles, Web
pages, and so on.

The approach to hit-description generation consists of several tasks. Some
tasks must be carried out at indexing time, while other tasks must be at search
time. One major goal is to minimize the computations that must be done at
search time so that query turn-around time is short enough for users.

Index-time Tasks for Hit Generation

1. Fragment, at indexing time, each document in the database into very small
units of information, where a unit can be (1) an equation, (2) a sentence,
which may contain inline math expressions, (3) a phrase or a non-syntactic
portion of a sentence, (4) a graph, (5) a fragment of a table (in the case
where tables are large), (6) a title of a chapter/section/subsection, (7) a
notational item, (8) a bibliographic entry, and so on.

2. Each fragment is then turned into a mini-document with its own ID. The
mini-document contains, besides its contents, several fields of information
that will facilitate and speed up the hit-description generation at search
time. One field is the ID of the document of which the mini-document is
a fragment. Other fields contain static information that will be used to
measure the relevance of the mini-document at search time, such as the
number and weights of the terms in the fragment, and the numbers of
cross-references to that fragment.

3. Index the fragments (i.e., mini-documents) of all the documents, and store
the index information in a separate index structure, termed the fragment
index. That index is different from the index for the documents. Note
that fragment contents and the fields in the fragment are stored verbatim
in the fragment index. The reason for this will be explained below.

15

Search-time Tasks for Hit-Description Generation

At search time, when the IDs of the hits that match a query have been
determined, the hits are presented one page at a time (typically 10 hits per
page). For each page of hits, the descriptions of those hits are generated as
follows: :

1. For each hit in a hit-page, identify the ID of the target document, and
formulate a derivative query made up of the conjunction of the original
query and the ID of the target document.

2. Submit the query for search against the fragment index. This results in
several “sub-hits”, each of which is a fragment of the hit target document.

3. If no sub-hits are returned, relax the derivative query so that the keywords
in the original query are combined into a disjunctive query (i.e., an OR-
query of the keywords), and repeat step 2, resulting this time with one or
more sub-hits.

4. The sub-hits are then relevance-ranked using the relevance metrics de-
scribed in the previous section. Note that the relevance score of the frag-
ments can be computed fast because much of the weight information (i.e.,
the static weight information) is stored in the fragment index, and thus
need not be computed from scratch.

5. A few top-scoring sub-hits (i.e., fragments) are selected, retrieved from
the fragment index, and combined (in document-order) into a descrip-
tion/summary that is presented along with the hit title in the hits page.

To illustrate the workings of this hit-packaging method, consider the query
“int sin^2”, and assume that one hit (say hit No. 9) is a page titled “Integrals
of Trigonometric Functions” that contains both some explanatory text (with
no math in them) and many integrals involving trigonometric functions. In
particular, assume that the only fragments containing “sin” in the hit are the
following four equations, in that order, but not necessarily consecutive:

1.
∫

(sin2 x + cos x)dx = sin x + x
2 − 1

4 sin 2x

2.
∫

(sin2 x + cos x− sin x)dx = sin x + cos x + x
2 − 1

4 sin 2x

3.
∫ p

0
i sin2 xdx = pi

2

4.
∫

sin2 xdx = x
2 − 1

4 sin 2x

The first step of the method identifies the unique ID of that hit (say the ID is
paper.217). The second step forms the query “int sin^2 AND paper.217” and
submits it to the search engine to search against fragments; the search returns 4
hits (referred to as sub-hits because they are fragments of the document). The
4 sub-hits are the 4 equations listed above. Since Step 2 resulted in sub-hits,

16

Step 3 does not execute. Step 4 ranks the 4 sub-hits, say in the following order:
4, 1, 2, 3. Assuming that the top 3 ranking fragments are to be picked, Step 5
will take equations 4, 1 and 2, and will then re-order them in document order,
that is, (1,2,4), and finally present the hit as:

9- Integrals of Trigonometric Functions
...

∫
(sin2 x + cos x)dx = sin x + x

2 − 1
4 sin 2x

...
∫

(sin2 x + cos x− sin x)dx = sin x + cos x + x
2 − 1

4 sin 2x

...
∫

sin2 xdx = x
2 − 1

4 sin 2x.

Several remarks are in order. First, this hit-description method requires no
file IO since all the fragment contents are stored in the fragment index, which
is a file that remains open as long as the search system is running. This greatly
speeds up the hit-description generation process. Second, the identification of
the relevant excerpts (i.e., fragments) is rather fast and straightforward: it is
a search-within-search process. Third, the relevance ranking of the matching
fragments is also fast since the static weight statistics are computed and stored
at indexing time, thus reducing the computation time for obtaining the relevance
vectors of the fragments. Last, hit-description generation requires considerably
more disk space to store the fragment index, which is much larger than the
document index because the actual fragments are stored in the fragment index.
However, since disk space is very inexpensive, the cost overhead is not a serious
disadvantage.

4.1 Speed Performance Evaluation of Hit-Description Gen-
eration

The same performance evaluation was done for hit-description generation as for
relevance ranking. A sample of the results is shown in Table 3. The table shows
the queries and the time it takes to derive the description of a single hit; the
time to derive the descriptions for a 10-hit page takes 10 times as much. As can
be seen, the time for generating the descriptions for the hits in one 10-hit page
ranges from a few to less than 200 milliseconds.

It is important to note that based on the two Tables 2 and 3, the total wait
time for a query to be processed and searched, plus the time to relevance-rank
all the hits, plus the time to generate the hit-descriptions per 10-hit page, is
about one second or less, making quite feasible the whole approach of math
searching, relevance ranking, and hit packaging.

4.2 Outcome Performance Evaluation of Hit-Description
Generation

The outcome performance is subjective to some extent. Nevertheless, exten-
sive testing was done on the DLMF testbed on over 100 queries, and the hit-
descriptions were examined closely. For each hit, up to 3 top-ranking fragments

17

Table 3: Speed Performance of Hit-Description Generation. (All time measure-
ments are in milliseconds, and a page has 10 hits)

Query Hit-packaging
Time per Hit

Ai2 26∫
sin 10.11

eulerBeta 7
sin2 19.42
jacobisn OR Si 4.97
eulerGamma 6.33
cos 4.28
sin 4.16
z 5.32

were identified and presented as the description, and were examined manually,
and compared to the rest of the document. In each case, the 3 top-ranking
fragments were found to be truly the most query-relevant and representative
of the hit-document. For example, for the query “sin”, Figure 2 shows the 3
top-ranking hits for that query, along with their descriptions. Observe that the
top-ranking hit is the one where sin z is defined.

Of course, a thorough subjective evaluation involving a large number of users
and a carefully selected benchmarks of queries will have to be conducted in the
future.

5 Relation to MathDex, MathWebSearch, and
DLMF Search

Much of what was presented in this paper relates directly to the three math
search systems that have been recently developed: MathDex, MathWebSearch,
and DLMF search. This section will discuss the state of the art of these systems
with respect to ranking and hit summarization, and address the applicability of
the presented techniques to these three systems.

In relevance ranking, MathDex, MathWebSearch, and the earlier experimen-
tal version of DLMF search, all used the standard tf∗idf relevance metric. The
designers of all the three systems have recognized the inadequacy of that metric
for math search. The work presented in this paper is part of solving the math
relevance ranking problem in general, with specific implementations tailored for
the DLMF in particular. No published work has appeared on addressing rele-
vance ranking in MathDex or MathWebSearch, but the designers of the latter
system plan to study this matter in the context of math-on-the-Web formula
search.

18

1–10 of 212 matching pages for query “sin”:

1. 4.14. Definitions and Periodicity ... sin z = eiz−e−iz

2i ,

... e±iz = cos z ± i sin z,

... tan z = sin z
cos z ,

2. 17.3. q-Elementary and q-Special Functions

... sinq(x) = 1
2i (eq(ix)− eq(−ix)) =

∑∞
n=0

(1−q)2n+1(−1)nx2n+1

(q;q)2n+1
,

3- 4.42. Solution of Triangles
... a

sin A = b
sin B = c

sin C

... sin A
sin a = sin B

sin b = sin C
sin c

... sin a cos B = cos b sin c− sin b cos c cosA

Figure 2: The first three hits and their summaries, for query “sin”

The weight-based approach presented here applies to both MathDex and
MathWebSearch. The major challenge in applying it, however, is in gathering
the necessary statistics from Web-published manuscripts. In a highly controlled
database like the DLMF, the designers have write-access to the contents, and
can thus add, algorithmically or manually, necessary markup to facilitate the
gathering of data that would factor into computing relevance metrics. But for
general Web pages of math contents, no such facility exists, and the designers
of search engines have to develop heuristics to mine the contents for relevance
information. While cross-reference information can be easily identified (because
of the markup nature of references in XML, XHTML, and even HTML), term
weights and object weights, which depend on knowing something about the
semantics of terms and objects, will be highly challenging to compute, and
will require significant natural language processing and mathematical writing
analysis algorithms, before the relevance ranking approach of this paper can be
fully utilized.

With regard to hit summarization, the MathWebSearch is for formula search,
so the hits are presented as the matching formulas themselves, and thus no hit-
summarization is needed. The MathDex has a hit summarization sub-system,
which displays the first sentence (or two) of the hit document, followed by one
equation that caused the document to match. This was a step in the right
direction, especially the inclusion of a matching equation. Nevertheless, the
leading sentences are not always relevant to the query; the approach presented
in this paper addresses the situation by capturing only relevant fragments to
make up the summary.

As in the case of relevance ranking, the presented hit-summarization ap-
proach works especially well in controlled database environments like the DLMF.
Fortunately, the fragmentation component and the indexing of fragments are

19

easily applicable to Web documents since the various types of fragments (e.g.,
sentences, equations, graphs, and tables or table fragments) are quite recogniz-
able in nearly all math authoring formats in use, such as Latex, XHTML/MathML,
HTML, and even MS Words. The search-time assembling of matching frag-
ments into summaries is also easily applicable in MathDex (and similar math
Web search systems). The only challenge is in using weight-based ranking of
the fragments, as explained above. But for identifying relevant fragments, the
tf∗idf relevance metric is likely to give better summaries than no ranking at all,
and better than using leading sentences of documents as summaries.

6 Conclusions

In this paper, new relevance ranking metrics and hit-description generation tech-
niques were presented and analyzed, and their performance was evaluated. It
was found that the new relevance metrics are superior to the conventional tf∗idf
metric, and the new hit-descriptions are more query-relevant and representative
of the hit targets than conventional methods of providing the title and some
leading sentences of the target document. Furthermore, it was determined that
the system response time was about one second or less, which attests to the
feasibility of the new approaches working collectively as a system.

Future research will focus on subjective evaluation of the new techniques,
with a cross-section of users, using standard testbeds and query benchmarks that
the research community will hopefully generate and agree upon. Refinements
and extensions of the techniques will undoubtedly have to be carried out as a
result of the subjective evaluation and the users’ feedback.

The most challenging and arguably most useful future direction in this area
of research is to develop mining techniques for classifying math terms and math
objects, as a first step towards assessing their weights, which would be incor-
porated into the relevance metrics. This is likely to be a sub-part of a larger
effort of math data mining research that would heuristically determine the se-
mantics (along with the disambiguation that will be needed) of mathematical
writing that involves little or no markup, which is the case in all the legacy
math literature.

References

[1] MathSciNet, http://www.ams.org/mathscinet, American Mathematical So-
ciety (AMS).

[2] R. A. Baeza-Yates and B. Riberto-Neto,, Eds. (1999) Modern Information
Retrieval. Addison Wesley.

[3] A. Bookstein, “Relevance,” Journal of the American Society of Information
Science, 30(5), 1979, pp. 269-273.

20

[4] C. Botev and J. Shanmugasundaram, “Context-Sensitive Keyword Search
and Ranking for XML,” WebDB, 2005.

[5] T. H. Einwohner and R. Fateman, “Searching Techniques for Integral Ta-
bles,” International symposium on Symbolic and algebraic computation,
ACM, 1995. (http://torte.cs.berkeley.edu:8010/tilu)

[6] F. Guidi., Searching and Retrieving in Content-based Repositories of Formal
Mathematical Knowledge. Ph.D. Thesis in Computer Science, University of
Bologna, March 2003. Technical report UBLCS 2003-06.

[7] F. Guidi and I. Schena, “A Query Language for a Metadata Framework
about Mathematical Resources,” The 2nd International Conf. Mathematical
Knowledge Management, Bertinoro, Italy, Feb. 2003.

[8] Jahrbuch Database. http://www.emis.de/MATH/JFM/JFM.html

[9] M. Kohlhase and I. Sucan, “A Search Engine for Mathematical Formulae,”
8th International Conference, of Artificial Intelligence and Symbolic Com-
putation, pp. 241-253, China, September 2006.

[10] D. W. Lozier, “The DLMF Project: A New Initiative in Classical Special
Functions,” International Workshop on Special Functions - Asymptotics,
Harmonic Analysis and Mathematical Physics. Hong Kong, June 21-25,
1999.

[11] D. W. Lozier, B. R. Miller, and B. V. Saunders, “Design of a Digital Mathe-
matical Library for Science, Technology and Education,” Proceedings of the
IEEE Forum on Research and Technology Advances in Digital Libraries;
IEEE ADL ’99, Baltimore, Maryland , May 1999.

[12] MathDi, http://www.emis.de/MATH/DI/, Mathematics Didactics
Database.

[13] R. Miner and R. Munavalli, “An Approach to Mathematical Search
Through Query Formulation and Data Normalization,” Calculemus/MKM
2007, p. 342-355, Hagenberg, Austria, June 27-30, 2007.

[14] Mathematica, http://www.mathematica.com

[15] B. Miller and A. Youssef, “Technical Aspects of the Digital Library of
Mathematical Functions,” Annals of Mathematics and Artificial Intelligence,
Vol. 38 (2003) 121–136.

[16] MoWGLI, Mathematics on the Web: Get It by Logics and Interfaces.
http://mowgli.cs.unibo.it/.

[17] G. Salton and M. J. McGill, Introduction to Modern Information Retrieval.
McGraw Hill, New York (1993)

21

[18] A. Youssef, “Information Search And Retrieval of Mathematical Contents:
Issues And Methods,” The proceedings of the ISCA 14th International
Conference on Intelligent and Adaptive Systems and Software Engineering
(IASSE-2005), July 20-22, 2005, Toronto, Canada.

[19] A. Youssef, “Roles of Math Search in Mathematics. The 5th International
Conference on Mathematical Knowledge Management,” Wokingham, UK,
August 11-12, 2006, pages 2–16.

[20] Zentralblatt MATH database at European Mathematical Information Ser-
vice (EMIS). http://www.emis.de/ZMATH/

22

